Posts

Showing posts with the label telescoping series

The Method of Differences — A Clean Proof of the Sum of Cubes

The Method of Differences — A Clean Proof of the Sum of Cubes The method of differences is a remarkably elegant tool for evaluating finite sums. When each term of a series can be written in the form f(r+1) − f(r) , the sum “collapses” — all interior terms cancel, leaving only a boundary expression. This behaviour is called a telescoping sum . 1) Telescoping Sums Assume the general term u r can be written as: u r = f(r+1) − f(r). Then the finite sum from r = 1 to r = n becomes: Σ u r = Σ ( f(r+1) − f(r) ). To see what happens, write out a few terms: u₁ = f(2) − f(1) u₂ = f(3) − f(2) u₃ = f(4) − f(3) ⋮ uₙ = f(n+1) − f(n) When these are added, everything cancels except the first and last pieces: Σ u r = f(n+1) − f(1). This is the essence of the method: interior structure disappears, leaving just the difference between the final and initial states. 2) A Classic Application — The Sum of Cubes We will use this technique to prove the well-known ...