Posts

Showing posts with the label calculus

Proof by Induction: The Sum of Squares Formula

Image
Proof by Induction: The Sum of Squares Formula Theorem. For any integer n ≥ 1, ∑ i=1 n i² = (1/6)·n·(n+1)·(2n+1) Proof (by mathematical induction) 1. Basis Step For n = 1: LHS = 1² = 1 RHS = (1/6)·1·(1+1)·(2·1+1) = (1/6)·1·2·3 = 1 Therefore, the formula holds for n = 1. 2. Inductive Hypothesis Assume the statement is true for some integer k ≥ 1: ∑(i=1→k) i² = (1/6)·k·(k+1)·(2k+1) 3. Inductive Step We must show it is true for n = k + 1: ∑(i=1→k+1) i² = [∑(i=1→k) i²] + (k+1)² = (1/6)·k·(k+1)·(2k+1) + (k+1)² = (1/6)(k+1)[k(2k+1) + 6(k+1)] = (1/6)(k+1)[2k² + 7k + 6] = (1/6)(k+1)(k+2)(2k+3) This matches the same form with k replaced by k+1: (1/6)·(k+1)·((k+1)+1)·(2(k+1)+1) Hence, the formula holds for n = k + 1. 4. Conclusion Since the statement is true for n = 1 (basis step), and true for n = k + 1 whenever it is true for n = k (inductive step), it follows by the principle of mathematical induction that ∑(i=1→n) i² = (1/6)·n·(n+1)·(2n+1) for al...

The Trapezoidal Rule — A Visual, First-Principles Introduction

Image
The Trapezoidal Rule — A Visual, First-Principles Introduction 11 November 2025 · @mathematics.proofs To understand integration deeply, it helps to think geometrically. Instead of memorising formulas, we begin by observing shapes. The goal is simple: break the interval into small pieces, estimate the area on each piece, and add everything together. Rectangles give a basic approximation. But functions rarely behave perfectly flat on every interval. A better idea is to allow the top edge to tilt. This leads us naturally to trapezoids . 1) Partitioning the Interval Consider an interval from a to b . We divide it into n equal parts. Δx = (b − a) / n x i = a + i·Δx for i = 0, 1, 2, …, n At each x i , we record the height of the function f(x i ). These sample values will guide our area estimates. 2) One Slice: Rectangle + Triangle Focus on a single subinterval [x i , x i+1 ]. If we draw a vertical line at x i and take a height of f(x i ), we obtain a rectangle o...

The Maclaurin Series — A Clean Derivation

Image
The Maclaurin Series — A Clean Derivation Many smooth functions can be written as an infinite polynomial. When this expansion is centred at x = 0 , we obtain the Maclaurin series . This article derives the Maclaurin formula directly from repeated differentiation, showing precisely why the coefficients involve derivatives and factorials. 1) Begin with a General Power Series Suppose a function f(x) can be expressed as f(x) = a₀ + a₁x + a₂x² + a₃x³ + … + aᵣxʳ + … The constants aᵣ are real coefficients whose values we wish to determine. 2) Evaluate at x = 0 f(0) = a₀ so a₀ = f(0). 3) Differentiate Once f′(x) = a₁ + 2a₂x + 3a₃x² + … + r·aᵣxʳ⁻¹ + … Setting x = 0 eliminates all higher powers: f′(0) = a₁. Thus, a₁ = f′(0). 4) Differentiate Again f″(x) = 2·1·a₂ + 3·2·a₃x + … + r(r−1)aᵣxʳ⁻² + … Evaluate at x = 0 : f″(0) = 2! · a₂ Hence a₂ = f″(0) / 2!. 5) The General Pattern Differentiate repeatedly. After r differentiations, a...