Posts

Showing posts with the label maclaurin series

The Maclaurin Series — A Clean Derivation

Image
The Maclaurin Series — A Clean Derivation Many smooth functions can be written as an infinite polynomial. When this expansion is centred at x = 0 , we obtain the Maclaurin series . This article derives the Maclaurin formula directly from repeated differentiation, showing precisely why the coefficients involve derivatives and factorials. 1) Begin with a General Power Series Suppose a function f(x) can be expressed as f(x) = a₀ + a₁x + a₂x² + a₃x³ + … + aᵣxʳ + … The constants aᵣ are real coefficients whose values we wish to determine. 2) Evaluate at x = 0 f(0) = a₀ so a₀ = f(0). 3) Differentiate Once f′(x) = a₁ + 2a₂x + 3a₃x² + … + r·aᵣxʳ⁻¹ + … Setting x = 0 eliminates all higher powers: f′(0) = a₁. Thus, a₁ = f′(0). 4) Differentiate Again f″(x) = 2·1·a₂ + 3·2·a₃x + … + r(r−1)aᵣxʳ⁻² + … Evaluate at x = 0 : f″(0) = 2! · a₂ Hence a₂ = f″(0) / 2!. 5) The General Pattern Differentiate repeatedly. After r differentiations, a...