The Essential Trigonometric Identities and Their Derivations
The Essential Trigonometric Identities and Their Derivations
Trigonometric identities describe exact relationships between the trigonometric functions. These identities hold for all valid angles and can be derived using the unit circle, right-triangle geometry, and rotation principles.
1. The Unit Circle and the Fundamental Identity
On the unit circle, a point has coordinates (cos θ, sin θ). Since the radius is 1:
(cos θ)² + (sin θ)² = 1
sin² θ + cos² θ = 1
2. Quotient and Reciprocal Identities
2.1 Basic Ratios
- sin θ = opposite / hypotenuse
- cos θ = adjacent / hypotenuse
- tan θ = opposite / adjacent
2.2 Quotient Identity
tan θ = (opposite / adjacent)
= (sin θ / cos θ)
tan θ = sin θ / cos θ
2.3 Reciprocal Functions
- csc θ = 1 / sin θ
- sec θ = 1 / cos θ
- cot θ = cos θ / sin θ
3. Pythagorean Extensions
From sin² θ + cos² θ = 1:
Divide by cos² θ:
tan² θ + 1 = sec² θ
Divide by sin² θ:
1 + cot² θ = csc² θ
4. Sum and Difference Identities
Rotating by α then β is equivalent to a single rotation by α + β. This yields:
- cos(α + β) = cos α cos β − sin α sin β
- sin(α + β) = sin α cos β + cos α sin β
Replacing β with −β:
- cos(α − β) = cos α cos β + sin α sin β
- sin(α − β) = sin α cos β − cos α sin β
5. Double-Angle Identities
5.1 Cosine
cos(2α) = cos² α − sin² α
- cos(2α) = 2cos² α − 1
- cos(2α) = 1 − 2sin² α
5.2 Sine
sin(2α) = 2 sin α cos α
5.3 Tangent
tan(2α) = (2 tan α) / (1 − tan² α)
6. Half-Angle Identities
sin² θ = (1 − cos(2θ)) / 2
cos² θ = (1 + cos(2θ)) / 2
- sin(θ / 2) = ± √((1 − cos θ) / 2)
- cos(θ / 2) = ± √((1 + cos θ) / 2)
7. Product-to-Sum Example
cos(α + β) + cos(α − β) = 2 cos α cos β
cos α cos β = (cos(α + β) + cos(α − β)) / 2
8. Summary of Core Identities
- sin² θ + cos² θ = 1
- tan θ = sin θ / cos θ
- cot θ = cos θ / sin θ
- sec θ = 1 / cos θ
- csc θ = 1 / sin θ
- tan² θ + 1 = sec² θ
- 1 + cot² θ = csc² θ
- sin(α ± β) = sin α cos β ± cos α sin β
- cos(α ± β) = cos α cos β ∓ sin α sin β
- sin(2α) = 2 sin α cos α
- cos(2α) = cos² α − sin² α
- tan(2α) = (2 tan α) / (1 − tan² α)
- sin² θ = (1 − cos(2θ)) / 2
- cos² θ = (1 + cos(2θ)) / 2
- cos α cos β = (cos(α + β) + cos(α − β)) / 2
© mathematics.proofs