This page collects some of the most important derivative formulas.
All functions are assumed to be differentiable where the formulas are applied.
1. Basic Derivatives
| Function |
Derivative |
| d/dx (c) |
0 |
| d/dx (x) |
1 |
| d/dx (kx) |
k |
| d/dx (xn) |
n xn-1 (for any real constant n) |
| d/dx (x2) |
2x |
| d/dx (x3) |
3x2 |
| d/dx (1/x) |
-1/x2 |
| d/dx (√x) |
1/(2√x) |
2. Exponential and Logarithmic Functions
| Function |
Derivative |
| d/dx (ex) |
ex |
| d/dx (ax) |
ax ln(a) |
| d/dx (ln|x|) |
1/x (x ≠ 0) |
| d/dx (loga|x|) |
1 / (x ln(a)) (x ≠ 0, a > 0, a ≠ 1) |
3. Trigonometric Functions
| Function |
Derivative |
| d/dx (sin x) |
cos x |
| d/dx (cos x) |
-sin x |
| d/dx (tan x) |
sec2 x |
| d/dx (cot x) |
-cosec2 x |
| d/dx (sec x) |
sec x tan x |
| d/dx (cosec x) |
-cosec x cot x |
4. Inverse Trigonometric Functions
| Function |
Derivative |
| d/dx (sin-1 x) |
1 / √(1 - x2) |
| d/dx (cos-1 x) |
-1 / √(1 - x2) |
| d/dx (tan-1 x) |
1 / (1 + x2) |
5. Hyperbolic Functions
| Function |
Derivative |
| d/dx (sinh x) |
cosh x |
| d/dx (cosh x) |
sinh x |
| d/dx (tanh x) |
sech2 x |
6. General Differentiation Rules
| Rule |
Formula |
| Constant multiple |
d/dx (k f(x)) = k f′(x) |
| Sum / difference |
d/dx (f(x) ± g(x)) = f′(x) ± g′(x) |
| Product rule |
d/dx (f(x) g(x)) = f′(x) g(x) + f(x) g′(x) |
| Quotient rule |
d/dx (f(x)/g(x)) = (f′(x) g(x) - f(x) g′(x)) / (g(x))2 |
| Chain rule |
d/dx (f(g(x))) = f′(g(x)) · g′(x) |
These formulas cover the core derivatives used in most GCSE, A-Level and early university calculus work.