2×2 Orthogonal Matrix Mastery — A Generalised Construction
2×2 Orthogonal Matrix Mastery — A Generalised Construction Orthogonal matrices in two dimensions reveal one of the cleanest structures in linear algebra. A 2×2 matrix is orthogonal when its columns (and rows) satisfy two conditions: They are perpendicular (their dot product is zero); They have unit length (their magnitude is one). This article presents a clear generalisation: any pair of perpendicular vectors with equal magnitude can be normalised to form an orthogonal matrix. 1. Begin with two perpendicular vectors Let the first vector be: (a, b) A perpendicular vector can be chosen as: (−b, a) Their dot products confirm orthogonality: (a, b) · (−b, a) = −ab + ab = 0 (a, −b) · (b, a) = ab − ab = 0 2. Compute their shared magnitude Both vectors have the same length: |(a, b)| = √(a² + b²) We can therefore normalise each one by dividing by √(a² + b²). 3. Form the matrix using the normalised vectors Place the two normalised vectors...